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A Vertex-Based Finite-Volume Time-Domain
Method for Analyzing Waveguide Discontinuities

C. H. Chan and J. T. Elson

Abstract—A vertex based finite-volume time-domain method is
proposed for analyzing parallel-plate waveguide discontinuities.
An irregular grid is chosen so that it can conform linearly to any
discontinuity. In this scheme, the electric field vector is located
at the vertices of the grid and the magnetic vector is located at
the centroids of the elements formed by the grid. Reflection and
transmission coefficients are calculated for the TE case. Excellent
agreement is obtained for single- and double-step discontinuities
when compared with the mode matching method.

I. INTRODUCTION

HE SIMPLICITY and usefulness of the finite-difference

time-domain method [1] are widely accepted. However,
a significant error due to the staircasing effect may occur
when a curved boundary exists in the compuational domain.
Various schemes have been developed to eradicate this dif-
ficulty [2]-[7]. All these methods of discretization can be
considered to be edge-based in the sense that the variables
are located at the middle of the edges of the grids. In this
paper, a vertex based finite-volume time-domain (FVTD)
method proposed recently [8], [9] is employed to analyze
parallel-plate waveguide discontinuities. The computational
domain is discretized with a triangular mesh so that any
curved boundary can be approximated by piece-wise linear
line segments. The electric field vector is sampled at the
vertices of the triangles and the magnetic field vector is
sampled at the centroids of the triangles. This method is not
limited by the choice of triangulation and is more general
than the triangulation presented in [10]. When using the
Delaunay—Voronoi property for Delaunay triangulation, the
location of the magnetic field in [10] will be equivalent to
the present method. This new algorithm is stable even if
the triangles are moderately- distorted from the equilateral
situation.

II. VERTEX-BASED FINITE-VOLUME TIME-DOMAIN METHOD

To demonstrate how this vertex-based FVTD method works,
let us consider the triangular grid depicted in Fig. 1. For the
TE case, E, is sampled at the vertices and both H, and H,
are sampled at the centroids of the triangles. The electric and
magnetic fields are assumed to be constant within the triangle
of area A, and the polygon of area Ay, respectively. The fields

Manuscript received June 16, 1993. This work was supported in part by
NSF Grant ECS-9158040.

The authors are with the Electromagnetics and Remote Sensing Laboratory,
Department of Electrical Engineering, University of Washington, Seattle, WA
98195.

IEEE Log Number 9212417,

Fig. 1. A vertex-based finite-volume time-domain grid for a two-dimensional

problem.

along an edge are assumed to be constant obtained from the
averaged values of the fields at the two endpoints of the edge.
With these assumptions, the FVTD equations given in (1) and
(2) reduce to (3) and (4), respectively, for the two-dimensional
problem:
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where At < 2r/c. Here, r is the radius of the smallest circle
inscribed in the triangles or polygons, c is the velocity of light,
and IV is the number of sides of the polygon. The lengths
of the 4th edge of the triangle and polygon are L; and L/,
respectively. While a rigorous stability condition has not been
derived, the time step chosen here is stable for all the examples
shown in this paper.

For the TE case, E,, H,, and H, are substituted into (3)
and (4) from which three scalar equations can be obtained as
follows:
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Fig. 2. Step discontinuity. (a) Single step; (b) Double step. a = 0.8X,,b,

= 0.6Xqand ¢ = 0.2),.
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Fig. 3. Triangular mesh for the vertex based finite-volume time-domain grid.
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Time stepping these three equations yields the time-domain
response of parallel-plate waveguides. The second-order Liao
absorbing boundary condition [11] is enforced for the total
and scattered E), field at the terminal plane and the source
plane, respectively. A detailed discussion on the application
of the absorbing boundary condition on the scattered field in
the total field formulation can be found in [12].

III. NUMERICAL RESULTS

To establish the accuracy of this new method, we calculate
the reflection and transmission coefficients of single- and
double-step parallel plate waveguide discontinuities (see Fig.
2) and compare the results with those obtained from the mode
matching method. Excellent agreement is shown in Table I
when compared to the mode matching method using 3 modes
on either side of the discontinuity. A discretization of 15
points per free-space wavelength (A, ) is chosen. In Table I, Z,
and Z; are the characteristic impedances at Regions I and II,
respectively. Next, we consider a discontinuity configuration
that cannot be analyzed by the mode matching method. Fig.
3 shows a portion of the triangular discretization of the
discontinuity which is described by a sine function. The scales
shown in Fig. 3 are in terms of wavelengths. The contour
plots of the electric field at various time steps within half a
period are shown in Figures 4a to 4d. Here the scales are in
terms of discretization Az = Ay = 0.067A,. The magnitudes
of the reflection and transmission coefficients are 0.102 and
0.993, respectively, giving a power check of 0.997. Although

Fig. 4. Contour plots of fields propagating through a waveguide discontinuity
described by a sine function. (a) At t; (b) At ¢ + T'/8; (¢) At t + T'/4; (d)
At t + 37/8.

TABLE I
COMPARISON OF THE PRESENT METHOD AND THE MODE MATCHING METHOD
Z, = 482.95 ohms AND Z;, = 682.02 ohms

|R| |7} Power Check

Fig. 2(a) IR|? + |T|2(bZ4)/(aZy)
Mode Matching FVTD = 0.156 1.355 | 1.000
0.157 1.343 0.983
Fig. 2(b) |R|? + |T)?
Mode Matching FVTD  0.298 0.955 1.000
0.308 0.948 0.997

not implemented in this paper, this vertex based FVTD can
be applied to the locally distorted grid in the vincinity of the
discontinuity and blended smoothly into a rectangular grid for
the conventional FDTD calculation in the region away from
the arbitrary discontinuity.

IV. CONCLUSION

We have presented a vertex based FVTD method for analyz-
ing arbitrary plate waveguide discontinuities. The primary grid
is a triangular grid while the complementary grid consists of
polygons formed by connecting the centroids of the triangles
of the primary grid. Excellent agreement in the reflection and
transmission coefficients is obtained when compared to the
mode matching method for step discontinuities. The flexibility
of the method in conforming to the shape of the waveguide
discontinuity is demonstrated via the example of a sine func-
tion. A study on the extension of the method for treating
three-dimensional problems is currently underway.
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